Крупнейший радиотелескоп


история создания, новые открытия и поиск внеземного разума / Хабр

Сразу скажу, что речь о самом большом телескопе с заполненной апертурой, что касается других систем, то есть и более масштабные. Например,

SKA (Square Kilometre Array)

, с приемными станциями, разбросанными на расстоянии до 3000 км от центра. Есть и радиотелескоп РАТАН-600 с незаполненной апертурой, диаметр которого составляет 576 метров.

Но сегодня поговорим именно о Fast — радиотелескопе, чаша которого представляет собой единое целое. Диаметр телескопа — 500 м, а построен он для изучения формирования и эволюции галактик, темной материи и вообще изучать историю возникновения Вселенной.

История создания


Системы подобного рода проектируются не один год, но еще больше времени занимает согласование крупных и мелких нюансов, набор сотрудников и вообще всякие рутинные операции. Создание FAST стартовало задолго до его официального старта проекта.

Идея появилась в начале 90-х, а разрабатывать концепт специалисты стали в июле 1994 года. Спустя 14 лет началось непосредственно проектирование. Процесс продвигался не особенно быстро, но все же продвигался.

В 2011 году стартовало строительство — оно началось в одном из отдалённых горных ущелий уезда Пинтан Цяньнань-Буи-Мяоского автономного округа провинции Гуйчжоу, Китай.

В 2015 году в радиотелескоп стали устанавливать отражающие элементы, а спустя год, в 2016, инженеры установили последний элемент из 4450.

Конечно, силами небольшой команды реализовать такой проект попросту невозможно. Поэтому к участию в подготовке концепта и строительству телескопа были привлечены сотни специалистов — ученых, строителей, инженеров и т.п. Некоторое время большинству пришлось даже жить вместе — в поселении, которое размещалось рядом с ущельем.

В 2016 году телескоп начал работу. Правда, это была своего рода тестовая программа — в эксплуатацию он был сдан лишь в январе 2020 года, после того, как прошел этап приемки государственными чиновниками.

Характеристики и возможности


Основной рабочий элемент системы — это сам рефлектор, который, как и в случае ныне разрушенного телескопа из Аресибо, размещается в естественном углублении. Отраженные от рефлектора радиоволны фокусируются на приемнике, который находится на высоте в 140 метров от нижней части чаши. Собственно, здесь тоже все похоже на телескоп из Аресибо — приемник тоже подвешен на тросах. Стоит отметить, что кабелями управляют специальные системы — роботы, которые подтягивают или ослабляют тросы исходя из ситуации.

Частоты, с которыми работает телескоп — от 70 МГц до 3 ГГц. Стоит отметить, что характеристики FAST лучше, чем у телескопа из Аресибо (которого, напомню, уже нет, к сожалению). Дуга у Fast — 113°—120° градусов, а вот у Аресибо — 70°. В целом, FAST примерно в 2,5 раза более чувствительный, чем телескоп Arecibo Observatory.

Телескоп очень чувствителен к радиопомехам, в радиусе 5 км от него не должно быть никаких источников постороннего сигнала. Для выполнения этого требования китайцам пришлось переселить 8000 местных жителей.

Изучение Вселенной — весьма интересная тема, но у нас есть и другие статьи, оцените — мы рассказываем о:
→ Маленьких «малинках» в крупном дата-центре
→ Динамических ИБП в дата-центрах: как мы устанавливали Piller CPM300 с двойным преобразованием
→ Разборке редкого зверя от Nvidia — DGX A100

Открытия


Уже в ходе тестового запуска астрономам удалось зафиксировать сигнал, который исходил от пульсара, который расположен на расстоянии 1300 тыс. световых лет от нашей планеты.

В 2018 году сообщалось, что телескоп помог обнаружить 11 новых пульсаров. Речь идет о подтвержденных объектах. Всего же за два этих года телескоп обнаружил 51 звезду, которые по своим характеристикам схожи с пульсарами.

В мае этого года стало известно, что общее количество пульсаров, обнаруженных при помощи Fast, составляет уже 201 звезду. Информация была предоставлена Государственной астрономической обсерваторией при Академии наук Китая

Ученые Китая изучают пульсары, поскольку, как считают астрономы, это идеальная «лаборатория» для изучения законов физики, действующих в экстремальных для материи условиях.

Среди прочих открытий, которые сделаны при помощи FAST — три быстрых радиовсплеска, источники которых находились в разных секторах Вселенной. FRB длятся всего несколько миллисекунд, а их источники находятся в миллионах световых лет от Земли. Ученые считают, что каждый день на Земле можно улавливать несколько тысяч FRB — конечно, при условии наличия необходимых инструментов и ресурсов.

Поиск братьев по разуму


С пульсарами и FRB все более-менее понятно — у астрономов есть достаточно четкие методики и технологии обнаружения таких объектов и событий. Но при помощи FAST реализуется и еще одно важное направление изучения Вселенной — поиск внеземных цивилизаций.

В сентябре 2020 года Китай запустил масштабную программу по поиску внеземного разума с использованием «Небесного ока» (такое прозвище получил радиотелескоп). Для этого Поднебесная стала участником

SETI (Search for extraterrestrial intelligence). Сразу после этого гигантский радиотелескоп FAST (Five-hundred-meter Aperture Spherical Telescope), стал работать и для поиска внеземных сигналов.

Ну а сейчас стало известно, что FAST собираются задействовать для поиска самовоспроизводящихся зондов, которые известны в науке как «зонды Фон Неймана».

Эти зонды, будучи обнаруженными, могут стать решением парадокса Ферми. Один из вопросов в рамках парадокса состоит в том, что если во Вселенной существует множество цивилизаций, включая очень древние, то почему мы до сих пор не обнаружили следы их инструментов?

Есть и ответ на этот вопрос — мы просто потратили на наблюдения мало времени, плюс у нас нет (вернее, не было) достаточно мощных инструментов, которые позволяют вести такие наблюдения. Телескоп FAST может обнаруживать зонды такого рода (при условии, что они излучают сигналы) на относительно большом расстоянии от Солнца.

Ученые предполагают, что зонды используют частоты, которые доступны для наблюдения радиотелескопом. Скорее всего, они «общаются» друг с другом при помощи частот, которые находятся в середине спектра, в котором работает FAST. Телескоп, по предположениям ученых, сможет обнаруживать не отдельные зонды, а их «стаи», созданные представителями цивилизаций II и III типа. То есть цивилизаций, освоивших ресурсы своей звездной системы и своей галактики соответственно — по классификации Кардашева. FAST, в теории, может обнаружить роботов на расстоянии до 16 000 световых лет в случае роботов цивилизаций II типа и до 400 млн световых лет в случае зондов, созданных цивилизациями III типа.

Самый большой радиотелескоп снял место посадки Apollo 15 / Хабр

... и не увидел лунный модуль. Два месяца, как астрофизики мира простились с легендарным телескопом Arecibo, который долгое время обладал самой большой «тарелкой». Китайцы сделали «тарелку» ещё больше, но американцы тем временем модернизировали свои оставшиеся телескопы, и подняли их характеристику в четыре раза.

Трехсотметровая антенна Arecibo долгое время оставалась непревзойденной по площади — это важное преимущество для «прослушивания» очень удаленных и слабых источников радиоизлучения. Но для науки этот телескоп служил не только как «ухо», но и как «голос» — радаром, зондирующим объекты Солнечной системы. В этой роли Arecibo работал в паре с другими радиотелескопами, в последние годы часто с Green Bank Telescope. Телескоп Green Bank меньше — диаметр антенны 100 м, зато она поворотная, в отличие от Arecibo, и для таких тарелок — это бесспорный рекорд.

Диаметр антенны влияет не только на чувствительность телескопа, но и на его разрешающую способность, то, что фотографы называют резкость. Разрешающая способность — это показатель насколько мелкие объекты или минимальное расстояние между ними способен рассмотреть телескоп. Разрешение зависит от двух параметров: диаметра телескопа и длины волны излучения, в котором ведется наблюдение. Так, для одинаковых по размеру телескопов, наблюдение на длине радиоволны 6 мм разрешение будет в 10 тыс раз хуже чем в наблюдении видимого света. То есть чтобы сравниться с 10-сантиметровым любительским телескопом, радиотелескоп должен иметь диаметр 1 километр.

К счастью, радиоастрономы догадались, как обойти это ограничение, если использовать несколько радиотелескопов на расстоянии. Один из способов — интерферометрия, когда объединяются данные от нескольких телескопов. Тогда диаметром считается расстояние между наиболее удаленными телескопами в общей системе. Например антенный массив ALMA состоит из 66 антенн и имеет общий диаметр 16 км, а 27 антенн VLA — диаметр 36 км.

Кстати, VLA вместе c Arecibo снималась в фильме «Контакт».

Если данные с телескопов снимать не аналоговым, а цифровым методом, то можно значительно расширить границы. По сути телескопы можно расставить по всей Земле и тогда диаметр условного телескопа будет ограничиваться только диаметром планеты. Эта технология называется непроизносимым термином радиоинтерферометрия со сверхдлинной базой. Впервые она была теоретически обоснована в СССР при участии Николая Кардашева, и под его же руководством был создан проект «РадиоАстрон» — космический радиотелескоп.

«РадиоАстрон» обладал тарелкой всего в 10 м, но объединяя работу с наземными станциями, позволял создавать радиотелескоп диаметром до десятков и сотен тысяч километров. С российским космическим телескопом работали практически все крупные наземные радиообсерватории, включая Arecibo, но американцы пошли своим путем. Они создали наземную сеть 25-метровых радиотелескопов VLBA, которая раскинулась на 9,5 тыс км от Гавайев до Карибского моря.

Российский аналог «Квазар-КВО» состоит из трех 32-метровых антенн и разнесен на расстояние 4,5 тыс км, на одной из его станций мне удалось однажды побывать.

Обычно сеть VLBA работает на приём астрофизических сигналов отдельно от Green Bank или Arecibo, а эти две обсерватории использовали другую технологию улучшения изображения — бистатическая визуализация. Похожую технологию используют авиационные или космические радары, зондирующие земную поверхность — SAR: Arecibo работал как гигантский радиопрожектор, «освещая» пролетавшие астероиды, Луну, Меркурий и спутники Юпитера, а стометровая антенна Green Bank принимала отраженные лучи. За счет разницы расположения между «освещающим» и принимающим телескопом качество картинки получалось лучше, чем если бы работал один одновременно и на излучение и на прием. Фактически тут действует тот же принцип, что и в интерферометрии — расстояние между двумя радиотелескопами определяют разрешающую способность как диаметр одного. В случае пары Arecibo-Green Bank — это 2,5 тыс. км, которые давали разрешение на Луне около 20 м, что в три раза лучше телескопа Hubble.

К сожалению, бистатический радар Arecibo-Green Bank дальше Юпитера не добивал, т.к. вращение Земли уводило из «прицела» Arecibo далекие тела пока туда летел сигнал. Но и этого хватало более чем. Главным открытием этой технологии стало открытие водяного льда на Меркурии.

И «закрытие» льда на Луне.

Также Arecibo много работал в наблюдении пролетающих околоземных астероидов.

А потом он разрушился.

К счастью, ученые «подстелили соломку» и смогли установить мощный передатчик на стометровый Green Bank. Теперь он будет «прожектором», и за счет своей поворотной системы и большей мощности передатчика сможет добивать не только до Юпитера, но и до Урана и Нептуна. Принимать же данные будет наземная сеть VLBA.

Новая система Green Bank-VLBA провела первые испытания и телескопы обратили взор к месту посадки Apollo 15 в лунных Аппенинах. Разрешение этой панорамы около 5 м на пиксель.

Разрешающая способность нового снимка примерно в четыре раза превосходит лунную съемку прежней пары Arecibo-Green Bank.

Авторы съемки не уточнили удалось ли им увидеть какие-либо следы пребывания человека в рассмотренной местности, поэтому пришлось самому сравнить результаты радарной съемки и спутниковой.

Первое, что бросается в глаза — светлые пятна радарного снимка не всегда совпадают с оптическим. Это логично, т.к. яркое отражение в радиолучах дают дробленые камни, т.е. эти пятна — следы разбросанной породы вокруг молодых метеоритных кратеров. А вот ни тропинки, вытоптанные астронавтами, ни оставшаяся ступень лунного модуля в радиодиапазоне не видны. В разрешении 5 м, модуль должен занимать два пикселя, и если бы он обладал более ярким отражением радиоволн, то был бы виден.

Судя по всему, панели экранно-вакуумной теплоизоляции и противометеоритной защиты такой же хороший поглотитель и рассеиватель радиолучей, что и окружающий реголит. Хотя возможно и другое объяснение — алгоритм обработки данных мог «съесть» два ярких пикселя, решив, что это просто шум.

Для сравнения, в видимом диапазоне, на снимках пятиметрового разрешения от японского аппарата Kaguya темное пятно на месте лунного модуля видно благодаря контрасту с окружающим грунтом. Можно даже рассмотреть отрезок наиболее вытоптанного грунта в северо-западном направлении от места прилунения.

Место посадки Apollo 15 со спутника Kaguya

Ранее в эту же долину заглядывал и космический телескоп Hubble. Но у него разрешение всего 60 м, потому сумел рассмотреть лишь смутные признаки посадки — чуть более светлое «гало» разогнанной ракетными двигателями пыли.

Сравнение снимка телескопа Hubble (слева) и спутника LRO (справа).

Самые качественные, на сегодня, спутниковые снимки места посадки Apollo 15 доступны благодаря американскому аппарату LRO. Тут уже видны и тропинки, и следы ровера, и сам ровер, и оставленное оборудование, и мусор. Разрешение этого кадра в десять раз лучше японского — 0,5 м.

Место посадки Apollo 15 со спутника LRO

При увеличении мощности передатчика на телескопе Green Bank, возможно, качество лунных панорам ещё возрастет, хотя вряд ли они снова будут смотреть на Apollo. В Солнечной системе много других целей, интересных астрофизикам и планетологам.

С радиотелескопами и местами посадок американцев на Луну известен другой курьез. В конце 70-х гг в Советском Союзе построили большой наземный радиотелескоп РАТАН-600. Для испытания астрономы направили его на Луну, и с удивлением обнаружили пять ярких источников радиоизлучения на поверхности. Оказалось, что это шли телеметрические данные с блоков приборов ALSEP, которые оставили американские астронавты. Они питались от радиоизотопных термоэлектрических генераторов и могли проработать ещё десятилетия. Но ученые NASA к тому времени уже утратили интерес к Луне, и погасили ALSEP вскоре после обнаружения советскими радиоастрономами.

Китай открыл крупнейший радиотелескоп для астрономов всего мира

https://ria.ru/20210331/radioteleskop-1603580486.html

Китай открыл крупнейший радиотелескоп для астрономов всего мира

Китай открыл крупнейший радиотелескоп для астрономов всего мира - РИА Новости, 31.03.2021

Китай открыл крупнейший радиотелескоп для астрономов всего мира

Китай с 31 марта официально открывает крупнейший в мире радиотелескоп FAST для сотрудничества с исследователями со всего мира. РИА Новости, 31.03.2021

2021-03-31T11:21

2021-03-31T11:21

2021-03-31T11:21

россия-китай: главное

китай

радиотелескоп fast

/html/head/meta[@name='og:title']/@content

/html/head/meta[@name='og:description']/@content

https://cdnn21.img.ria.ru/images/07e5/03/1f/1603583263_0:320:3072:2048_1920x0_80_0_0_4a32305ac0de97a6efe5344cb448fdee.jpg

МОСКВА, 31 мар - Проект "Россия-Китай: Главное". Китай с 31 марта официально открывает крупнейший в мире радиотелескоп FAST для сотрудничества с исследователями со всего мира.Как отмечается в заявлении Государственной астрономической обсерватории при Академии наук Китая, астрономы со всего мира могут зайти на спецсайт телескопа и подать там заявку на наблюдения.Все иностранные заявки будут рассмотрены. Результаты рассмотрения будут опубликованы 20 июля. Исполнение зарубежных заявок стартует в августе.С момента начала своей работы радиотелескоп FAST обнаружил уже 300 пульсаров.

https://ria.ru/20210329/energiya-1603302131.html

китай

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2021

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdnn21.img.ria.ru/images/07e5/03/1f/1603583263_103:0:2834:2048_1920x0_80_0_0_2be6b0738e51d29afbcac9c0bfa3d6b1.jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

китай, радиотелескоп fast

Око Поднебесной: зачем Китай построил крупнейший радиотелескоп мира

https://ria.ru/20181110/1532472643.html

Око Поднебесной: зачем Китай построил крупнейший радиотелескоп мира

Око Поднебесной: зачем Китай построил крупнейший радиотелескоп мира - РИА Новости, 14.11.2018

Око Поднебесной: зачем Китай построил крупнейший радиотелескоп мира

Радиотелескоп "Аресибо", в который поместится пирамида Хеопса, более полувека оставался самым большим в мире. Два года назад китайцы обошли американцев,... РИА Новости, 14.11.2018

2018-11-10T08:00

2018-11-10T08:00

2018-11-14T12:37

наука

космос - риа наука

китай

/html/head/meta[@name='og:title']/@content

/html/head/meta[@name='og:description']/@content

https://cdnn21.img.ria.ru/images/sharing/article/1532472643.jpg?14778485831542188264

МОСКВА, 10 ноя — РИА Новости. Радиотелескоп "Аресибо", в который поместится пирамида Хеопса, более полувека оставался самым большим в мире. Два года назад китайцы обошли американцев, запустив в действие FAST. Профессор Бо Пен, заместитель главы обсерватории FAST, рассказывает, зачем КНР потратила почти 200 миллионов долларов на эту "стройку тысячелетия".Сегодня на орбите Земли и ее поверхности десятки различных обсерваторий наблюдают за радиоволновой, инфракрасной, рентгеновской, ультрафиолетовой, микроволновой и даже гравитационной Вселенной. Правительства и частные организации, такие как проект Breakthrough Listen Юрия Мильнера, готовы выделять десятки и сотни миллионов долларов на эти исследования.Всего век назад астрономы изучали далекие звезды и галактики, пользуясь лишь собственным зрением и относительно простыми оптическими телескопами, совершенно не похожими на гигантские обсерватории современности.Только в 1932 году ученые, благодаря счастливой случайности, осознали, что есть и другие способы наблюдения за Вселенной. Карл Янский, один из инженеров американской фирмы Bell Telephone, пытался понять, почему в системе телефонной радиосвязи, разработанной этой корпорацией, возникали загадочные помехи, не связанные с грозами или радиостанциями.  Он обнаружил, что эти помехи возникали с периодичностью ровно раз в "астрономические" сутки, и сделал вывод, что их источником были не объекты на поверхности Земли, а светящаяся лента нашей Галактики. Эти сигналы, как выяснили первые радиоастрономы примерно через треть века после опытов Янского, порождены сверхмассивной черной дырой в ее центре.Первые радиотелескопы появились в конце 1930 годов. Они открыли возможность изучения совершенно новой, "чужой" Вселенной, многие объекты которой не видны в других диапазонах электромагнитных волн и ранее не были известны ученым. В последующие годы радиотелескопы стали главным инструментом для исследования самых далеких, холодных и невидимых уголков мироздания, постепенно увеличиваясь в размерах и приобретая все более причудливые и необычные формы.К примеру, помимо классических "тарелок", таких как FAST или "Аресибо", есть радиотелескопы кольцеобразной формы, такие как РАТАН-600, а также своеобразные "виртуальные" телескопы, например, американские VLA и ATA, объединяющие ресурсы десятков или даже сотен отдельных приемников в одну гигантскую виртуальную обсерваторию.Различия в устройстве и предназначении всех этих обсерваторий не позволяют выделить среди них однозначного лидера. Самым большим одиночным радиотелескопом до недавнего времени считалась 305-метровая радиотарелка "Аресибо", построенная в карстовой пещере на острове Пуэрто-Рико в 1963 году.Но два года назад в провинции Гуйчжоу завершилась очередная социалистическая "стройка века" — пятисотметрового радиотелескопа FAST с площадью тарелки примерно в два раза больше, чем у "Аресибо". Профессор Пен рассказал о том, как она была построена и какие открытия она будет совершать, выступая с лекцией на московском фестивале "Наука 0+", проходившем в стенах МГУ имени М.В. Ломоносова в начале октября.Китай делает самЭта обсерватория, как отметил Пен, должна была выглядеть совсем иначе. Ее главный идеолог, известный китайский радиоастроном Нань Женьдун (Nan Rendong), предложил построить в КНР крупнейший составной радиотелескоп мира KARST, состоящий из трех десятков относительно "небольших" тарелок диаметром 200 метров. Он должен был стать одной из "половинок" интернациональной обсерватории SKA, в который планировалось включить небольшое число больших и относительно большой набор небольших радиотарелок.Международные партнеры не поддержали эту идею и решили реализовать более простой вариант SKA на территории ЮАР и Австралии. Его телескопы сейчас постепенно собираются на двух площадках в двух государствах южного полушария.Неудача не заставила Китай отказаться от обсерватории — Женьдун и его единомышленники просто радикально пересмотрели свои планы, одновременно уменьшив их масштаб и сделав "стройку тысячелетия" еще более монументальной, не прекращая при этом сотрудничества со SKA. Вместо россыпи мелких телескопов в Китае успешно построили первую 500-метровую радиотарелку, служившую прототипом "большого" KARST. "Можем ли мы создать еще более крупный телескоп? Тут можно сказать сразу и да, и нет. С одной стороны, успех FAST говорит о том, что ничто этому не мешает. С другой, увеличение размеров бесполезно без увеличения чувствительности инструментов. Без этого проще и рациональнее построить что-то вроде SKA вместо нового KARST", — продолжает Пен.Амбиции FAST, по словам профессора, заключались не только в гигантских размерах и сложностях, связанных с сооружением столь большой рукотворной структуры, но и в характере работы самого телескопа.В отличие от "Аресибо" и ряда других крупных радиотелескопов, чья форма всегда остается неизменной, каждый сегмент тарелки FAST, состоящей из 4,5 тысячи треугольных "чешуек", можно поднять или опустить примерно на полметра. Это радикально расширяет обзор телескопа и дает ему целый ряд новых научных возможностей, недоступных фактически для всех других радиообсерваторий. "Уникальная адаптивная поверхность нашей тарелки позволяет использовать ее для изучения того, где рождаются радиоволны, вырабатываемые пульсарами. Сразу несколько моих коллег сейчас пытаются понять, как выглядят эти всплески и какие физические процессы внутри нейтронных звезд отвечают за их формирование", — добавляет Лей Цянь (Lei Qiang), один из членов научной команды FAST.Помимо этого, FAST способен исполнить мечту многих радиоастрономов и получить первые данные по структуре так называемой тени черной дыры — особой области в ближайших окрестностях горизонта событий, где возникает его своеобразное отражение. Тогда ученые смогут понять, как устроены черные дыры и правильно ли их описывает теория относительности.Тень невидимки"Ничто не мешает нам провести подобные наблюдения, однако для этого понадобится большая удача. Для получения "фотографии" тени нужно, чтобы черная дыра находилась относительно близко к Земле и при этом обитала в двойной звездной системе в компании пульсара. Пока у нас нет кандидатов на эту роль", — уточняет астрофизик.Помимо поисков тени черной дыры и изучения тайн рождения пульсаров, FAST уже сейчас занимается изучением структуры межзвездной среды, в поведении которой российские астрономы несколько лет назад выявили аномалии. В планах китайских исследователей также наблюдения за гравитационными волнами. "В принципе, мы способны обнаружить и гравитационные волны, однако это дело очень далекой перспективы, так как для этого требуются десятилетия непрерывных наблюдений за одними и теми же источниками. Соответственно, нам нужно прождать как минимум 10-20 лет для того, чтобы однозначно сказать, есть ли у нас такая техническая возможность", — отмечает Цянь.Подобные долгосрочные наблюдения, как надеется ученый, помогут FAST проверить теорию относительности, а также найти источник одного из самых загадочных объектов радиовселенной — так называемых FRB-вспышек (быстрых радиовсплесков), о существовании которых ученые узнали всего десять лет назад. Их иногда называют "сигналами пришельцев" из-за необъяснимой периодичности в их структуре и пока непонятной природы."У нас уже есть все необходимое цифровое оборудование для наблюдений за FRB-всплесками и потенциальными сигналами инопланетных цивилизаций. Сейчас мы заняты поисками внегалактических пульсаров и еще не ведем систематических наблюдений такого рода", — говорит Цянь.Как и "Аресибо", FAST может стать одним из важных элементов еще более крупных инструментов — наземно-космических интерферометров, объединяющих ресурсы нескольких наземных радиотарелок и космических обсерваторий в гигантские виртуальные радиоантенны. Одним из самых успешных и крупнейших проектов такого рода почти десять лет назад стал российский комплекс "РадиоАстрон", задействовавший десятки наземных радиотелескопов и космический аппарат "Спектр-Р".По словам Цяня, сейчас специалисты FAST проверяют "железо" и софт, необходимый для работы телескопа в подобном режиме. В ближайшее время FAST присоединится к интерферометрам, построенным на базе китайских телескопов, а в будущем, как надеется ученый, станет частью "РадиоАстрона" и других международных проектов.В скором времени, добавил Пен, возможности FAST по участию в работе интерферометров значительно расширятся, когда телескоп "научится" работать на частотах в 8-10 гигагерц. Это значительно расширит границы ее применения, позволит изучать Вселенную намного глубже и расширит участие новой китайской обсерватории в международных проектах.

https://ria.ru/20171222/1511447512.html

https://ria.ru/20170412/1492072116.html

https://ria.ru/20170721/1498945913.html

https://ria.ru/20180608/1522374971.html

https://ria.ru/20160926/1477856430.html

https://ria.ru/20170406/1491615184.html

https://ria.ru/20180510/1520278631.html

китай

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2018

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]u

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

космос - риа наука, китай

МОСКВА, 10 ноя — РИА Новости. Радиотелескоп "Аресибо", в который поместится пирамида Хеопса, более полувека оставался самым большим в мире. Два года назад китайцы обошли американцев, запустив в действие FAST. Профессор Бо Пен, заместитель главы обсерватории FAST, рассказывает, зачем КНР потратила почти 200 миллионов долларов на эту "стройку тысячелетия".

22 декабря 2017, 08:00НаукаВесь мир — телескоп: как ученые из России превратили космос в обсерваторию

Сегодня на орбите Земли и ее поверхности десятки различных обсерваторий наблюдают за радиоволновой, инфракрасной, рентгеновской, ультрафиолетовой, микроволновой и даже гравитационной Вселенной. Правительства и частные организации, такие как проект Breakthrough Listen Юрия Мильнера, готовы выделять десятки и сотни миллионов долларов на эти исследования.

Всего век назад астрономы изучали далекие звезды и галактики, пользуясь лишь собственным зрением и относительно простыми оптическими телескопами, совершенно не похожими на гигантские обсерватории современности.

Только в 1932 году ученые, благодаря счастливой случайности, осознали, что есть и другие способы наблюдения за Вселенной. Карл Янский, один из инженеров американской фирмы Bell Telephone, пытался понять, почему в системе телефонной радиосвязи, разработанной этой корпорацией, возникали загадочные помехи, не связанные с грозами или радиостанциями.  

12 апреля 2017, 12:45НаукаУченый рассказал, почему Россия не вступила в астрономический "Евросоюз"

Он обнаружил, что эти помехи возникали с периодичностью ровно раз в "астрономические" сутки, и сделал вывод, что их источником были не объекты на поверхности Земли, а светящаяся лента нашей Галактики. Эти сигналы, как выяснили первые радиоастрономы примерно через треть века после опытов Янского, порождены сверхмассивной черной дырой в ее центре.

Первые радиотелескопы появились в конце 1930 годов. Они открыли возможность изучения совершенно новой, "чужой" Вселенной, многие объекты которой не видны в других диапазонах электромагнитных волн и ранее не были известны ученым. 

В последующие годы радиотелескопы стали главным инструментом для исследования самых далеких, холодных и невидимых уголков мироздания, постепенно увеличиваясь в размерах и приобретая все более причудливые и необычные формы.

К примеру, помимо классических "тарелок", таких как FAST или "Аресибо", есть радиотелескопы кольцеобразной формы, такие как РАТАН-600, а также своеобразные "виртуальные" телескопы, например, американские VLA и ATA, объединяющие ресурсы десятков или даже сотен отдельных приемников в одну гигантскую виртуальную обсерваторию.

21 июля 2017, 19:19НаукаУченые нашли источник "сигнала пришельцев" в созвездии Девы

Различия в устройстве и предназначении всех этих обсерваторий не позволяют выделить среди них однозначного лидера. Самым большим одиночным радиотелескопом до недавнего времени считалась 305-метровая радиотарелка "Аресибо", построенная в карстовой пещере на острове Пуэрто-Рико в 1963 году.

Но два года назад в провинции Гуйчжоу завершилась очередная социалистическая "стройка века" — пятисотметрового радиотелескопа FAST с площадью тарелки примерно в два раза больше, чем у "Аресибо". Профессор Пен рассказал о том, как она была построена и какие открытия она будет совершать, выступая с лекцией на московском фестивале "Наука 0+", проходившем в стенах МГУ имени М.В. Ломоносова в начале октября.

Китай делает сам

Эта обсерватория, как отметил Пен, должна была выглядеть совсем иначе. Ее главный идеолог, известный китайский радиоастроном Нань Женьдун (Nan Rendong), предложил построить в КНР крупнейший составной радиотелескоп мира KARST, состоящий из трех десятков относительно "небольших" тарелок диаметром 200 метров. Он должен был стать одной из "половинок" интернациональной обсерватории SKA, в который планировалось включить небольшое число больших и относительно большой набор небольших радиотарелок.

Международные партнеры не поддержали эту идею и решили реализовать более простой вариант SKA на территории ЮАР и Австралии. Его телескопы сейчас постепенно собираются на двух площадках в двух государствах южного полушария.

Неудача не заставила Китай отказаться от обсерватории — Женьдун и его единомышленники просто радикально пересмотрели свои планы, одновременно уменьшив их масштаб и сделав "стройку тысячелетия" еще более монументальной, не прекращая при этом сотрудничества со SKA. Вместо россыпи мелких телескопов в Китае успешно построили первую 500-метровую радиотарелку, служившую прототипом "большого" KARST. 

8 июня 2018, 17:30НаукаАстрономы нашли загадочные объекты у черной дыры в центре Галактики

"Можем ли мы создать еще более крупный телескоп? Тут можно сказать сразу и да, и нет. С одной стороны, успех FAST говорит о том, что ничто этому не мешает. С другой, увеличение размеров бесполезно без увеличения чувствительности инструментов. Без этого проще и рациональнее построить что-то вроде SKA вместо нового KARST", — продолжает Пен.

Амбиции FAST, по словам профессора, заключались не только в гигантских размерах и сложностях, связанных с сооружением столь большой рукотворной структуры, но и в характере работы самого телескопа.

В отличие от "Аресибо" и ряда других крупных радиотелескопов, чья форма всегда остается неизменной, каждый сегмент тарелки FAST, состоящей из 4,5 тысячи треугольных "чешуек", можно поднять или опустить примерно на полметра. Это радикально расширяет обзор телескопа и дает ему целый ряд новых научных возможностей, недоступных фактически для всех других радиообсерваторий. 

26 сентября 2016, 15:00НаукаУченый: телескоп FAST заменит американский "Аресибо" только через годыНедавно запущенный радиотелескоп FAST, крупнейший инструмент такого рода на Земле, сможет лишь через годы заменить собой американскую обсерваторию "Аресибо", которую власти США планируют закрыть в ближайшее время.

"Уникальная адаптивная поверхность нашей тарелки позволяет использовать ее для изучения того, где рождаются радиоволны, вырабатываемые пульсарами. Сразу несколько моих коллег сейчас пытаются понять, как выглядят эти всплески и какие физические процессы внутри нейтронных звезд отвечают за их формирование", — добавляет Лей Цянь (Lei Qiang), один из членов научной команды FAST.

Помимо этого, FAST способен исполнить мечту многих радиоастрономов и получить первые данные по структуре так называемой тени черной дыры — особой области в ближайших окрестностях горизонта событий, где возникает его своеобразное отражение. Тогда ученые смогут понять, как устроены черные дыры и правильно ли их описывает теория относительности.

Тень невидимки

"Ничто не мешает нам провести подобные наблюдения, однако для этого понадобится большая удача. Для получения "фотографии" тени нужно, чтобы черная дыра находилась относительно близко к Земле и при этом обитала в двойной звездной системе в компании пульсара. Пока у нас нет кандидатов на эту роль", — уточняет астрофизик.

Помимо поисков тени черной дыры и изучения тайн рождения пульсаров, FAST уже сейчас занимается изучением структуры межзвездной среды, в поведении которой российские астрономы несколько лет назад выявили аномалии. В планах китайских исследователей также наблюдения за гравитационными волнами. 

6 апреля 2017, 10:56НаукаАстрономы создали телескоп размером с Землю для изучения черных дыр

"В принципе, мы способны обнаружить и гравитационные волны, однако это дело очень далекой перспективы, так как для этого требуются десятилетия непрерывных наблюдений за одними и теми же источниками. Соответственно, нам нужно прождать как минимум 10-20 лет для того, чтобы однозначно сказать, есть ли у нас такая техническая возможность", — отмечает Цянь.

Подобные долгосрочные наблюдения, как надеется ученый, помогут FAST проверить теорию относительности, а также найти источник одного из самых загадочных объектов радиовселенной — так называемых FRB-вспышек (быстрых радиовсплесков), о существовании которых ученые узнали всего десять лет назад. Их иногда называют "сигналами пришельцев" из-за необъяснимой периодичности в их структуре и пока непонятной природы.

"У нас уже есть все необходимое цифровое оборудование для наблюдений за FRB-всплесками и потенциальными сигналами инопланетных цивилизаций. Сейчас мы заняты поисками внегалактических пульсаров и еще не ведем систематических наблюдений такого рода", — говорит Цянь.

Как и "Аресибо", FAST может стать одним из важных элементов еще более крупных инструментов — наземно-космических интерферометров, объединяющих ресурсы нескольких наземных радиотарелок и космических обсерваторий в гигантские виртуальные радиоантенны. 

10 мая 2018, 13:40НаукаАстрономы начали поиски инопланетян на миллионе звезд Млечного Пути

Одним из самых успешных и крупнейших проектов такого рода почти десять лет назад стал российский комплекс "РадиоАстрон", задействовавший десятки наземных радиотелескопов и космический аппарат "Спектр-Р".

По словам Цяня, сейчас специалисты FAST проверяют "железо" и софт, необходимый для работы телескопа в подобном режиме. В ближайшее время FAST присоединится к интерферометрам, построенным на базе китайских телескопов, а в будущем, как надеется ученый, станет частью "РадиоАстрона" и других международных проектов.

В скором времени, добавил Пен, возможности FAST по участию в работе интерферометров значительно расширятся, когда телескоп "научится" работать на частотах в 8-10 гигагерц. Это значительно расширит границы ее применения, позволит изучать Вселенную намного глубже и расширит участие новой китайской обсерватории в международных проектах.

Самый большой радиотелескоп в мире.

Помните 10 лет назад был фильм про Джеймса Бонда - "Золотой глаз". Там как раз действия разворачивались на этом телескопе.

Многие наверное подумали что это декорации к фильму. А телескоп к тому моменту уже работал 50 лет


Обсерватория Аресибо находится на высоте 497 метров над уровнем моря. Несмотря на то, что расположена она в Пуэрто Рико, используется и финансируется она всевозможными университетами и агентствами США. Основным предназначением обсерватории является исследование в области радиоастрономии, а также наблюдение за космическими телами. Для этих целей и был построен самый большой в мире радиотелескоп. Диаметр тарелки составляет 304,8 метров.

Глубина тарелки (зеркало рефлектора по научному) сотавляет - 50,9 метров, общая площадь - 73000 м2. Изготовлена она из 38778 перфорированных (дырчатых) алюминиевых пластин, уложенных на сетку из стальных тросов.


Над тарелкой подвешена массивная конструкция, передвижной облучатель и его направляющие. Держится она на 18 тросах, натянутых от трёх башен поддержки.



Если Вы купите входной билет на экскурсию, стоимостью 5$, то получите возможность подняться на облучатель по специальной галерее или в клетке подъёмника.

Строительство радиотелескопа было начато в 1960 году, а уже 1 ноября 1963 года состоялось открытие обсерватории.



За время своего существования, радиотелескоп Аресибо отличился тем, что были открыты несколько новых космических объектов (пульсары, первые планеты за пределами нашей Солнечной системы), лучше исследованы поверхности планет нашей Солнечной системы, а также, в 1974 году было отправлено послание Аресибо, в надежде, что какая-нибудь внеземная цивилизация откликнется на него. Ждёмс.

При проведении этих исследований включается мощный радар и измеряется ответная реакция ионосферы. Антенна такого большого размера является необходимой, потому что на тарелку для измерения попадает лишь малая часть рассеянной энергии. Сегодня только треть времени работы телескопа отведено для изучения ионосферы, треть - для исследования галактик, а оставшаяся треть отдана астрономии пульсаров.

Аресибо, без сомнения, превосходный выбор для поиска новых пульсаров, поскольку огромные размеры телескопа делают поиски более продуктивными, позволяя астрономам находить доселе неизвестные пульсары, которые оказались слишком малы, чтобы быть замеченными при помощи телескопов меньших размеров. Тем не менее, такие размеры имеют и свои недостатки. Например, антенна должна оставаться закрепленной на земле из-за невозможности управлять ей. Вследствие чего телескоп в состоянии охватить только сектор неба, который находится непосредственно над ним на пути вращения земли. Это позволяет Аресибо наблюдать за сравнительно небольшой частью неба, по сравнению с большинством других телескопов, которые могут охватывать от 75 до 90% неба.

Второй, третий и четвертый по величине телескопы, которые используются (или будут использоваться) для исследования пульсаров - это соответственно телескоп Национальной радиоастрономической обсерватории (НРАО) в Западной Вирджинии, телескоп института Макса Планка в Эффельсберге и телескоп Грин-Бэнк НРАО тоже в Западной Вирджинии. Все они имеют диаметр не менее 100 м и полностью управляемы. Несколько лет назад 100-метровая антенна НРАО упала на землю, и сейчас ведутся работы по установке более качественного 105-метрового телескопа.

Это лучшие телескопы для изучения пульсаров, не попадающих в радиус действия Аресибо. Заметьте, что Аресибо втрое больше 100-метровых телескопов, а это значит, что он охватывает площадь в 9 раз большую и достигает результатов научных наблюдений в 81 раз быстрее.

Тем не менее, существует множество телескопов диаметром меньше 100 метров, которые также успешно используются для изучения пульсаров. Среди них Parkes в Австралии и 42-метровый телескоп НРАО.

Большой телескоп может быть заменен совмещением нескольких телескопов меньших размеров. Эти телескопы, точнее, сети телескопов, могут охватывать площадь, равную той, которая охватывается стометровыми антеннами. Одна из таких сетей, созданная для апертурного синтеза, называется Very Large Array. Она насчитывает 27 антенн, каждая 25 метров в диаметре.


Начиная с 1963 года, когда было закончено строительство обсерватории Аресибо в Пуэрто-Рико (Arecibo Observatory in Puerto Rico), радиотелескоп этой обсерватории, диаметром 305 метров и площадью 73000 квадратных метров, был самым большим радиотелескопом в мире. Но вскоре Аресибо может потерять этот статус из-за того, что в провинции Гуйчжоу, расположенной в южной части Китая, начато строительство нового радиотелескопа Five-hundred-meter Aperture Spherical radio Telescope (FAST). По завершению строительства этого телескопа, которое согласно планам должно завершиться в 2016 году, телескоп FAST будет в состоянии "видеть" космос на глубину в три раза больше и производить обработку данных в десять раз быстрее, чем это позволяет оборудование телескопа Аресибо.

Изначально строительство телескопа FAST было намечено для участия в международной программе Square Kilometer Array (SKA), в рамках которой будут объединены сигналы с тысяч антенн радиотелескопов меньших размеров, разнесенных на расстояние 3000 км. Как известно на данный момент, телескоп SKA будет возводиться в южном полушарии, но вот где именно, в Южной Африке или Австралии, будет решено позже.

Несмотря на то, что предложенный проект телескопа FAST не стал частью проекта SKA, китайское правительство дало проекту зеленый свет и выделило финансирование в размере 107,9 миллионов долларов для начала строительства нового телескопа. Строительство было начато в марте месяце, в провинции Гуйчжоу, в южной части Китая.

В отличие от телескопа Аресибо, который имеет неподвижную параболическую систему, фокусирующую радиоволны, кабельная сеть телескопа FAST и система конструкции параболического отражателя позволят телескопу менять форму поверхности отражателя в режиме реального времени с помощью системы активного контроля. Это станет возможным благодаря наличию 4400 треугольных алюминиевых листов, из которых формируется параболическая форма отражателя и которую можно навести на любую точку ночного неба.

Использование специальной современной приемной аппаратуры придаст телескопу FAST беспрецедентно высокую чувствительность и высокие скорости обработки поступающих данных. С помощью антенны телескопа FAST можно будет принять настолько слабые сигналы, что станет возможным "рассматривание" с его помощью нейтральных облаков водорода в Млечном пути и других галактиках. А основными задачами, над которыми будет работать радиотелескоп FAST, будут обнаружение новых пульсаров, поиск новых ярких звезд и поиск внеземных форм жизни.

источники
grandstroy.blogspot.com
relaxic.net
planetseed.com
dailytechinfo.org

история создания, новые открытия и поиск внеземного разума

Сразу скажу, что речь о самом большом телескопе с заполненной апертурой, что касается других систем, то есть и более масштабные. Например, SKA (Square Kilometre Array), с приемными станциями, разбросанными на расстоянии до 3000 км от центра. Есть и радиотелескоп РАТАН-600 с незаполненной апертурой, диаметр которого составляет 576 метров.

Но сегодня поговорим именно о Fast — радиотелескопе, чаша которого представляет собой единое целое. Диаметр телескопа — 500 м, а построен он для изучения формирования и эволюции галактик, темной материи и вообще изучать историю возникновения Вселенной.

История создания


Системы подобного рода проектируются не один год, но еще больше времени занимает согласование крупных и мелких нюансов, набор сотрудников и вообще всякие рутинные операции. Создание FAST стартовало задолго до его создания.

Идея появилась в начале 90-х, а разрабатывать концепт специалисты стали в июле 1994 года. Спустя 14 лет началось непосредственно проектирование. Процесс продвигался не особенно быстро, но все же продвигался.

В 2011 году стартовало строительство — оно началось в одном из отдалённых горных ущелий уезда Пинтан Цяньнань-Буи-Мяоского автономного округа провинции Гуйчжоу, Китай.

<img src=«hsto.org/files/127/ae6/643/127ae6643c91467b9b34fd7c14fa2f93.jpg align=»center"/>
В 2015 году в радиотелескоп стали устанавливать отражающих элементов, а спустя год, в 2016, инженеры установили последний элемент из 4450.

Конечно, силами небольшой команды реализовать такой проект попросту невозможно. Поэтому к участию в подготовке концепта и строительству телескопа были привлечены сотни специалистов — ученых, строителей, инженеров и т.п. Некоторое время большинству пришлось даже жить вместе — в поселении, которое размещалось рядом с ущельем.

В 2016 году телескоп начал работу. Правда, это была своего рода тестовая программа — в эксплуатацию он был сдан лишь в январе 2020 года, после того, как прошел этап приемки государственными чиновниками.

Характеристики и возможности


Основной рабочий элемент системы — это сам рефлектор, который, как и в случае ныне разрушенного телескопа из Аресибо, размещается в естественном углублении. Отраженные от рефлектора радиоволны фокусируются на приемнике, который находится на высоте в 140 от нижней части чаши. Собственно, здесь тоже все похоже на телескоп из Аресибо — приемник тоже подвешен на тросах. Стоит отметить, что кабелями управляют специальные системы — роботы, которые подтягивают или ослабляют тросы исходя из ситуации.

Частоты, с которыми работает телескоп — от 70 МГц до 3 ГГц. Стоит отметить, что характеристики FAST лучше, чем у телескопа из Аресибо (которого, напомню, уже нет, к сожалению). Дуга у Fast — 113°—120° градусов, а вот у Аресибо — 70°. В целом, FAST примерно в 2,5 раза более чувствительный, к чем телескоп Arecibo Observatory.

Телескоп очень чувствителен к радиопомехам, в радиусе 5 км от него не должно быть никаких источников постороннего сигнала. Для выполнения этого требования китайцам пришлось переселить 8000 местных жителей.

Изучение Вселенной — весьма интересная тема, но у нас есть и другие статьи, оцените — мы рассказываем о:
→ Маленьких «малинках» в крупном дата-центре
→ Динамических ИБП в дата-центрах: как мы устанавливали Piller CPM300 с двойным преобразованием
→ Разборке редкого зверя от Nvidia — DGX A100

Открытия


Уже в ходе тестового запуска астрономам удалось зафиксировать сигнал, который исходил от пульсара, который расположен на расстоянии 1300 км от нашей планеты.

В 2018 году сообщалось, что телескоп помог обнаружить 11 новых пульсаров. Речь идет о подтвержденных объектах. Всего же за два этих года телескоп обнаружил 51 звезду, которые по своим характеристикам схожи с пульсарами.

В мае этого года стало известно, что общее количество пульсаров, обнаруженных при помощи Fast, составляет уже 201 звезду. Информация была предоставлена Государственной астрономической обсерваторией при Академии наук Китая

Ученые Китая изучают пульсары, поскольку, как считают астрономы, это идеальная «лаборатория» для изучения законов физики, действующих в экстремальных для материи условиях.

Среди прочих открытий, которые сделаны при помощи FAST — три быстрых радиовсплеска, источники которых находились в разных секторах Вселенной. FRB длятся всего несколько миллисекунд, а их источники находятся в миллионах световых лет от Земли. Ученые считают, что каждый день на Земле можно улавливать несколько тысяч FRB — конечно, при условии наличия необходимых инструментов и ресурсов.

Поиск братьев по разуму


С пульсарами и FRB все более-менее понятно — у астрономов есть достаточно четкие методики и технологии обнаружения таких объектов и событий. Но при помощи FAST реализуется и еще одно важное направление изучение Вселенной — поиск внеземных цивилизаций.

В сентябре 2020 года Китай запустил масштабную программу по поиску внеземного разума с использованием «Небесного ока» (такое прозвище получил радиотелескоп). Для этого Поднебесная стала участником
SETI (Search for extraterrestrial intelligence). Сразу после этого гигантский радиотелескоп FAST (Five-hundred-meter Aperture Spherical Telescope), стал работать и для поиска внеземных сигналов.

Ну а сейчас стало известно, что FAST собираются задействовать для поиска самовоспроизводящихся зондов, которые известны в науке как «зонды Фон Неймана».

Эти зонды, будучи обнаруженными, могут стать решением парадокса Ферми. Один из вопросов в рамках парадокса состоит в том, что если во Вселенной существует множество цивилизаций, включая очень древние, то почему мы до сих пор не обнаружили следы их инструментов?

Есть и ответ на этот вопрос — мы просто потратили на наблюдения мало времени, плюс у нас нет (вернее, не было, достаточно мощных инструментов, которые позволяют вести такие наблюдения). Телескоп FAST может обнаруживать зонды такого рода (при условии, что они излучают сигналы) на относительно большом расстоянии от Солнца.

Ученые предполагают, что зонды используют частоты, которые доступны для наблюдения радиотелескопом. Скорее всего, они «общаются» друг с другом при помощи частот, которые находятся в середине спектра, в котором работает FAST. Телескоп, по предположениям ученых, сможет обнаруживать не отдельные зонды, а их «стаи», созданные представителями цивилизаций II и III типа. То есть цивилизаций, освоивших ресурсы своей звездной системы и своей галактики соответственно — по классификации Кардашева. FAST, в теории, может обнаружить роботов на расстоянии до 16 000 световых лет в случае роботов цивилизаций II типа и до 400 млн световых лет в случае зондов, созданных цивилизациями III типа.

Автор: Мария Андреева

Источник

Крупнейший в мире радиотелескоп займётся с осени поиском сигналов от инопланетных цивилизаций | Новости

Радиотелескоп FAST с сентября начнёт прослушивать космос в поисках сигналов от внеземных цивилизаций. Об этом сообщил Чжан Тунцзе, глава китайской исследовательской группы SETI. У них уже есть на примете несколько интересных сигналов — кандидатов на более подробное изучение, но, по словам учёного, они вряд ли исходят от инопланетной цивилизации.

FAST, Five hundred meter Aperture Spherical Telescope или «Радиотелескоп с пятисотметровой апертурой», ещё называют «Китайским небесным глазом». Как понятно из названия, его диаметр составляет 500 метров. Это рекордная величина для телескопа с заполненной апертурой — у которого зеркальная «тарелка» цельная. Диаметр рабочей поверхности его ближайшего конкурента, радиотелескопа Аресибо, — 305 метров. В России есть крупнейший радиотелескоп с незаполненной апертурой — РАТАН-600 (число в названии указывает на диаметр зеркального «кольца»).

FAST построили ещё в 2016 году, но официально он начал работать совсем недавно — в январе 2020 года, после нескольких лет тестирования. В число его научных задач, помимо поиска внеземного разума, входит изучение тёмной материи, объектов эпохи реионизации (когда образовались первые звёзды), а также исследование того, как формируются и эволюционируют галактики.

Читайте также